Ur python program too slow at calculating the boiling point of tungsten under a 600bar atmosphere of francium fluoride ? Too baaad…
Well, let's implement some part of it in C++ using Boost.Python with its NumPy brand new module. That's easy, I promise.
This tuto uses Python 3.4, installed from https://www.python.org/downloads/mac-osx/. Should be easily adapted to other versions.
git clone –recursive https://github.com/boostorg/boost.git modular-boost
./bootstrap.sh –with-libraries=python –with-python-version=3.4 –with-python-root=/Library/Frameworks/Python.framework/Versions/3.4/bin/python3.4
sudo ./b2 toolset=clang cxxflags="-stdlib=libc++ -std=c++0x" linkflags="-stdlib=libc++" -j2 install
/usr/local/lib/libboost_python3.a
and /usr/local/lib/libboost_numpy3.a
.Exemple Makefile :
NAME = gauss_seidel CXX = clang++ CXXFLAGS += -Wall -std=c++1y PYTHON_VER = 3.4 NUMPY_ROOT = $(shell pip$(PYTHON_VER) show numpy | grep "Location:" | cut -d" " -f2-) CXXFLAGS += -fPIC $(shell python$(PYTHON_VER)-config --cflags) -I$(NUMPY_ROOT)/numpy/core/include LDFLAGS += -fPIC $(shell python$(PYTHON_VER)-config --ldflags) #LDFLAGS += -lboost_python3 -lboost_numpy3 # Fails at module import LDFLAGS += /usr/local/lib/libboost_python3.a /usr/local/lib/libboost_numpy3.a all: $(NAME).o $(CXX) -shared $^ $(LDFLAGS) -o $(NAME).so $(NAME).o: $(NAME).cpp %.o: %.cpp $(CXX) -o $@ -c $< $(CXXFLAGS)
Exemple code (my_little_poney.cpp
) :
#include <boost/python.hpp> #include <boost/python/numpy.hpp> namespace py = boost::python; namespace np = boost::python::numpy; np::ndarray shift_col (int k, np::ndarray M) { size_t n = M.shape(0), p = M.shape(1); np::ndarray R = np::empty(py::make_tuple(n,p), M.get_dtype()); for (size_t i = 0; i < n; ++i) { for (size_t j = 0; j < p; ++j) { R[i][(j+k)%p] = M[i][j]; } } return R; } BOOST_PYTHON_MODULE(my_little_poney) { np::initialize(); py::def("shift_col", shift_col); }
Then build with make
. It will create a my_little_poney.so
dynamic lib which can be loaded as a python module with import my_little_poney
.
Here is the issue : all operation made with array[i][j]
are executed through the python interpreter and are very inefficient.
You can use the xif::multiarr
warper from xifutils to access directly and easily ndarray
s :
template <typename T, size_t dim> struct nparray_accessor : public xif::multiarr<T,dim> { nparray_accessor (np::ndarray& ndarr) : xif::multiarr<T,dim>( (T*)ndarr.get_data(), [&ndarr] (size_t d) -> size_t { return ndarr.shape(d); } ) {} };
nparray_accessor<T,dim>
takes T
as the data type (should match the ndarray
's dtype
) and dim
the number of dimensions.
Documentation about Boost.Python.NumPy : http://boostorg.github.io/python/develop/doc/html/numpy/.